On the Expressiveness of the Interval Logic of Allen's Relations Over Finite and Discrete Linear Orders
نویسندگان
چکیده
Interval temporal logics take time intervals, instead of time instants, as their primitive temporal entities. One of the most studied interval temporal logics is Halpern and Shoham’s modal logic of time intervals HS, which associates a modal operator with each binary relation between intervals over a linear order (the so-called Allen’s interval relations). A complete classification of all HS fragments with respect to their relative expressive power has been recently given for the classes of all linear orders and of all dense linear orders. The cases of discrete and finite linear orders turn out to be much more involved. In this paper, we make a significant step towards solving the classification problem over those classes of linear orders. First, we illustrate various non-trivial temporal properties that can be expressed by HS fragments when interpreted over finite and discrete linear orders; then, we provide a complete set of definabilities for the HS modalities corresponding to the Allen’s relations meets, later, begins, finishes, and during, as well as the ones corresponding to their inverse relations. Given the results presented here, the only missing piece of the expressiveness puzzle is that of the definabilities for the modality corresponding to the Allen relation overlaps (those for the inverse relation overlapped by would immediately follow by symmetry).
منابع مشابه
Expressiveness of the Interval Logics of Allen's Relations on the Class of All Linear Orders: Complete Classification
We compare the expressiveness of the fragments of Halpern and Shoham’s interval logic (HS), i.e., of all interval logics with modal operators associated with Allen’s relations between intervals in linear orders. We establish a complete set of interdefinability equations between these modal operators, and thus obtain a complete classification of the family of 2 fragments of HS with respect to th...
متن کاملOn the Complexity of Fragments of the Modal Logic of Allen's Relations over Dense Structures
Interval temporal logics provide a natural framework for temporal reasoning about interval structures over linearly ordered domains, where intervals are taken as the primitive ontological entities. Their computational behaviour and expressive power mainly depend on two parameters: the set of modalities they feature and the linear orders over which they are interpreted. In this paper, we conside...
متن کاملInterval Temporal Logics: a Journey
We discuss a family of modal logics for reasoning about relational structures of intervals over (usually) linear orders, with modal operators associated with the various binary relations between such intervals, known as Allen’s interval relations. The formulae of these logics are evaluated at intervals rather than points and the main effect of that semantic feature is substantially higher expre...
متن کاملI T L: J
We discuss a family of modal logics for reasoning about relational structures of intervals over (usually) linear orders, with modal operators associated with the various binary relations between such intervals, known as Allen’s interval relations. The formulae of these logics are evaluated at intervals rather than points and the main effect of that semantic feature is substantially higher expre...
متن کاملDecidability of the interval temporal logic AABB over the rationals
The classification of the fragments of Halpern and Shoham’s logic with respect to decidability/undecidability of the satisfiability problem is now very close to the end. We settle one of the few remaining questions concerning the fragment AĀBB̄, which comprises Allen’s interval relations “meets” and “begins” and their symmetric versions. We already proved that AĀBB̄ is decidable over the class of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014